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Statistics of trees and branched polymers from a generalised 
Hilhorst model 

T C Lubenskyt, Chandan Dasguptat and C M ChavesS 
Department of Physics and Laboratory for Research in the Structure of Matter, University 
of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 

Received 17 April 1978 

Abstract. A generalisation of the Hilhorst model in which at each site, x, on a lattice, there 
is an n-state variable v(x) ,  and an s-state variable, cr(x), which interact via a Hamiltonian 

is introduced. It is shown that if (s - 1) = An, the n = 0 limit of the partition function for 
this model is the generating function for trees in which In K is the chemical potential for 
bonds (monomers), In A for the number of trees (polymers) and In h for the number of free 
ends of all trees. Fields which mark any point and fields which mark only external points 
of a polymer are identified. The above Hamiltonian is converted to a field theory which is 
used to discuss the dependence on the monomer number, N, of critical properties such as 
the radius of gyration of branched polymers with a small number of branchings. It is 
shown that these properties are controlled by the usual n = 0 polymer fixed point. 

1. Introduction 

The solutions to a number of non-thermodynamic statistical problems may be 
obtained from the thermodynamics and correlation functions of certain model Hamil- 
tonians which are functions of some parameter that is analytically continued to an 
apparently non-physical value. The most familiar of these problems is that of the 
self-avoiding random walk (SAW) which is equivalent to the centrifugal statistics of a 
single isolated long polymer. de Gennes (1972) showed that the statistics of SAW'S 
could be generated by considering the n = 0 limit of the model spin Hamiltonian 
X= - J & x p ( x )  - s(x') where s(x) is an n-component classical vector of fixed length 
and x and x' are nearest-neighbour sites on a lattice. This result has been generalised 
by des Cloizeaux (1975) to permit a treatment of semi-dilute solutions of long 
polymers. Predictions based on this theory are in good agreement with experiments 
(Daoud er a1 1975). A fairly substantial theoretical literature of polymer statistics 
using the n = 0 n-vector model (Emery 1975, Jasnow and Fisher 1976, Daoud and 
Jannink 1976, de Gennes 1975, Burch and Moore 1976a, b, Moore 1977, Schaffer 
and Witten 1977) has been developed. 

tsupported in part by the National Science Foundation under grant No. DMR 76-21703 and MRL 
program No. DMR 76-00678 and the Office of Naval Research under grant No. N00014-76-C-0106. 
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Another model Hamiltonian which is relevant to a variety of non-thermodynamic 
statistical problems is the s-state Potts model (Potts 1952). In this model there is a 
variable ~ ( x )  at each site x which can exist in any of s different states. Bonds 
connecting neighbouring sites have one energy if the sites are in the same state and 
another energy if they are in different states. The Hamiltonian is then 

The one-state limit of this model describes the statistics of percolating clusters 
(Kasteleyn and Fortuin 1969, Fortuin and Kasteleyn 1972, Harris et a1 1975). The 
zero-state limit, on the other hand, counts trees (Stephen 1976) on a lattice (i.e. 
configurations with no closed loops). Furthermore, the coefficient of 1/J in the 
susceptibility x(x, x') in the large-J limit is proportional to the resistance between 
points x and x' of a network in which each bond is occupied by a resistance (Fortuin 
and Kasteleyn 1972, Dasgupta et a1 1978). 

Recently, Hilhorst (1976, 1977) introduced a model with discrete symmetry (as 
opposed to the continuous symmetry of the n-vector model) that can be used to 
generate the statistics of self-avoiding walks. This model can be employed in low- 
dimensional position-space renormalisation-group calculations (For a review of posi- 
tion-space renormalisation-group transformations see van Leeuwen 1975) whereas 
the n-vector model cannot. In the Hilhorst model, there is a vector p ( x )  at each site 
that is constrained to point alon the positive and negative axes of an n-dimensional 
hypercube: p(x)=  (0,. . . , 0, f J n, . . .). The Hamiltonian is then 

R= - J  p ( x ) . p ( x ' ) .  
k x ' )  

SAW'S are generated by the n = 0 limit of this model. An alternate form of this 
Hamiltonian allows one to see how SAW'S are obtained if one knows that the zero- 
state Potts model (Potts 1952) generates tree-like configurations: 

(1.3) 

where v ( x )  is an n-state variable and ( ~ ( x )  takes on the values f 1. Now, consider the 
correlation function 

c7 (x )a (x')) * (1.4) y (x)v (x ' ) G(x,x')=(p(x)- P ( X ' ) ) = ( ~  

The n + O  limit allows only tree-like configurations to appear in G, whereas the fact 
that Z U = * l u  = 0 eliminates all configurations with end points at sites other than x and 
XI. Thus the n + 0 limit of G(x, x') counts the number of SAW'S beginning at x and 
ending at XI. 

In this paper, we introduce a generalisation of the Hilhorst model in which 
u ( x ) a ( x ' )  is replaced by ( s S ~ ( ~ ~ ( ~ ' )  - 1) where ~ ( x )  is an s-state variable rather than a 
two-state variable. This model, which we will call the ns-component Hilhorst model, 
is related to an ns-state Potts model. G(x,x') for this model still generates SAW'S 
when n + 0 since 'C,(sS"'- 1) = 0. The generalisation to s arbitrary rather than s = 2 
will permit a rather comprehensive treatment of the statistics of branched polymers 
and trees as well as linear polymers when s is analytically continued to one. The 
principal purpose of this paper is to explore how one might obtain generating 
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functions for the statistics of branched polymers using the generalised Hilhorst 
Hamiltonian, and how this Hamiltonian can be converted into a field theory suitable 
for study using analytic renormalisation-group procedures (Wilson and Kogut 1974). 
In future publications, we will use the ns-component Hilhorst model to obtain actual 
calculations of statistical properties of branched polymers. 

In order to understand the limitations of the ns-component Hilhorst model, it is 
useful to distinguish between polymers and trees. A tree is any connected graph with 
no closed loops. Examples of trees on a lattice with number of branches NB = 1 , 3  and 
4 are shown in figure 1. We will be interested in averages over ensembles in which the 

Figure 1. Examples of trees on a lattice. ( a )  shows a tree with a single branch. This is 
equivalent to a self-avoiding walk between its end points. ( b )  and ( c )  show trees with three 
and four branches. 

average lengths of all branches are equal. In this case, we can represent trees by the 
more schematic graphs shown in figure 2 .  The external vertices (marked, for example, 
by a, b and c in fig. 2 ( a ) )  of these trees are indistinguishable. A real branched polymer 
consists of distinguishable linear chains connected by poly-functional units allowing 
fairly unconstrained rotation about their axes. For example, the chains Aa and Ab in 
figure 2 ( a )  can rotate about the axis Ac leading to a distinct configuration of the 
polymer if a and b are interchanged. Furthermore, in a solution (in three dimensions), 
a real molecule rotates and tumbles freely so that cyclic permutations of the three 
external vertices lead to distinct configurations of the polymer. There are, therefore, 
6( = 3 X 2) polymeric configurations corresponding to the tree graph figure 2(a), and 
8( = 2 x 4) configurations corresponding to that of figure 2(b) .  

A polymer of type T can be placed into one-to-one correspondence with a tree 
graph T. In general there are N T  ways that such a polymer can be accommodated into 
its associated tree graph. Examples of trees with tri-functional branching units are 

I b l  I C  1 Id 1 l e )  

Figure 2. Schematic graphs of trees or branched polymers in which each branch has the 
same length on the average. 

l a /  
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shown in figure 2. Notice that there are two different tree graphs with NB = 9 (figures 
2 ( d )  and 2 ( e ) )  with widely different values of NT (8 for figure 2(d) and 48( = 3! x 23) 
for figure 2 ( e ) )  whereas for N B  s 7, there is only one tree graph for each value of N B .  

The model presented here deals most naturally with trees. It is obvious, however, 
from the above considerations that the configurational statistics of a branched poly- 
mer of type T can be obtained trivially from that of the corresponding tree. In 
particular, we will be able to calculate such quantities as the number of configurations 
of a polymer with Nb monomers and three branches with end points at xl, x2 and x3 
and to distinguish this from the number of configurations of a linear polymer passing 
through x2 with end points at x1 and x3. We will also be able to calculate such 
quantities as the radius of gyration, (Ri), of a branched polymer of type T. Detailed 
calculations of (I?:), which will be presented in a later publication, proceed more 
easily for N B  s 7 when only bi- and tri-functional units are present. 

The above considerations refer to the properties of a single type of tree or polymer 
averaged over an ensemble in which each branch has the same number of monomers 
on the average, The situation becomes more complex if one wants to inquire about 
properties such as the radius of gyration averaged over ensembles in which the 
number of branches and type of polymer are not determined. In this case, different 
probabilities of occurrence for each type of tree or polymer can be specified. For 
example, one might consider an ensemble in which each configuration, independent of 
type, of a tree with N B  branches occurs with equal probability. The generating 
function €or this ensemble will turn out to be an appropriate limit of the partition 
function of the model presented here. Thus, we will be able to discuss properties of 
dilute and semi-dilute solutions of trees in this ensemble. In real polymer systems, the 
probability distribution usually depends on the kinetics of the formation of the 
polymer molecule. A particular model (Flory 1941) of such kinetics leads to a 
statistical ensemble that has been studied by Zimm and Stockmayer (1949) and by de 
Gennes (1968). This statistical ensemble can also be treated using the present model. 
Detailed discussions of properties of polymers and trees in these two ensembles will 
be presented in a future publication. In particular, we will generalise the calculations 
of Zimm and Stockmayer (1949) and of de Gennes (1968) of the radius of gyration of 
branched molecules to include a repulse interaction between monomer units. 

This paper has four sections in addition to the introduction. Section 2 presents the 
generalised Hilhorst model and some necessary definitions.. Section 3 shows how the 
model can yield information about the statistics of: ( a )  linear polymers; and (6) trees 
and branched polymers. Section 4 shows how the generalised Hilhorst model can be 
converted into a continuum field theory permitting calculations of exponents and 
scaling functions in 4-E dimensions. Finally, § 5 summarises the results of this paper. 

2. Model and definitions 

Consider a d-dimensional hypercubic lattice with L sites labelled by x. At each site, 
there is an n-state variable, v ( x ) ,  and an s-state variable, ~ ( x ) .  The generalisation of 
the Hilhorst Hamiltonian, H, that we consider in this paper is 
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where T is the temperature, ( x ,  x') signifies the bond associated with nearest-neigh- 
bour sites x and x'; fiU(x), &,,(x) and f u ( x )  are external fields and 

a x -  ) -  ~ " f x ~ u ( s p "  - 1) ( 2 . 2 a )  

(2.2b) 

It will be convenient to introduce a third field T : ( x )  via 

T,Y ( x )  = T,Y (x) +  by ( x ) .  (2 .3 )  

In what follows, an alternative representation of equation (2.1) will be useful. Intro- 
duce vectors ai' = (n)"*Si' and e7 satisfying 

i = l  U =  1 

5' ePe7' =(sa"'- 1); i e : = O ;  i ere; = s&~,. (2 .46 )  

The vectors e7 have been used extensively in studies of the s-state Potts model (Zia 
and Wallace 1975). 2 assumes a quadratic form in terms of these variables: 

/ = 1  u = l  o=l  

Z= - K  Qif(s)Qi l (x ' ) -C H i f ( X ) Q i f ( X ) - C  h : ( x ) ~ ; ( x ) - C  f u ( X )  ( 2 . 5 )  
k x ' )  X x. U x. 

where the summation convention on repeated Latin subscripts is understood and 
where 

( 2 . 6 ~ )  v ( x )  u ( x )  Q i f (X)=ai  el 9 

and 

(2.6b) 1 1 

n u  
~ ~ , ( x ) = - z  Ru(x)aZe: 5- ( n ) 1 / 2  fii(x)ei- 

The goal of this paper is to evaluate the partition function, 

as a power series in K and functions of f i V ( x ) ,  &,(s) and f u ( x )  and to identify each 
term in the series with particular tree or polymer configurations on a lattice. For some 
purposes, it is convenient to expand 2 directly in terms of f iu ,  &,, and fu. For other 
purposes, however, it is expedient to expand 2 in terms of variables which can occur 
no more than once at any site x. In Appendix 1 we show that it is possible to choose 
the fields aU(x), C u ( x )  and f u ( x )  so that 

e-* = e-%B II [ ( I  -gaY(x)~,Y(x)) ( l+  g;(x)TbY(x))(1 -g 'Y(x)~C"(x)) l  ( 2 . 8 )  
x, U 

where XB is the first term on the right-hand side of equation (2.1). We will often 
choose Y = 1. We, therefore, write 

g? ( x )  = g,(x) and T: ( x )  = T, (x) CY = a, b, c. (2 .9 )  
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Each term in the Taylor series expansion of Z can be represented by a graph, %, on 
the lattice of L sites. Before proceeding with the evaluation of 2, it is convenient to 
introduce some definitions. 

(1) A bond or monomer is a straight line connecting two neighbouring lattice sites. 
Each factor of nKS""'(sS""'- 1) in the expansion of 2 is represented by a bond. 

( 2 )  A marked site or vertex is any vertex x at which a factor T, (x)  or T, (x )  appears. 
An a-marked vertex is a vertex at which a factor ra(x) (a  = a or c) appears. It is 
possible to consider the general case in which some of the marked vertices are 
a-marked and the others are c-marked. However, for simplicity, we will confine our 
attention to the case where only one type of marking (a or c) is present. If Z is to be 
expanded in powers of g, or g,, then a given vertex can be marked no more than once 
by any of these fields. On the other hand, if 2 is to be expanded in powers of AI, 
multiply a-marked vertices will appear. On occasion, we will refer to marked vertices 
as end points. 

( 3 )  A cluster is any set of vertices connected with respect to bonds. Isolated points 
are considered clusters. The number of clusters in a given graph will be denoted by 

(4) A marked cluster is any cluster containing marked vertices. The number of 

( 5 )  A tree is any marked cluster with no closed loops. The number of trees will be 

(6 )  An external verfex of a cluster is any vertex connected to the rest of the cluster 

(7) An internal vertex is any other vertex in a cluster. 
(8) An a-vertex is a vertex marked only with a-markers or not at all. 
(9) A 6-vertex is a vertex at which a factor Tb(x) appears. 
(10) The order of a vertex is the number of bonds entering, plus the number of 

(1 1) A linear polymer is a tree containing only vertices of order two. 
(12) A branched tree is a tree containing at least one vertex of order three or 

higher. 
Examples of linear and branched trees are shown in figures 1 and 2. Note that the 

above definitions imply that a twice-marked isolated site is considered a linear 
polymer. The n = 0 n-vector model also counts this as a polymer. Note also that if Z 
is expanded in terms of f i ~  or g,,  a linear cluster marked at two end points and any 
intermediate point is considered a branched tree. We will see shortly that this is not 
the case for c-marked trees when s + 1. 

We are now in a position to evaluate the contribution of an arbitrary graph to 2. 
Consider a graph containing Nb bonds, N,  clusters and NM marked clusters. The 
contribution of this graph to 2 can be expressed in the form, 

NC(% 

marked clusters will be denoted by N M ( ~ ) .  

denoted by Nt(%). 

by a single bond. 

markers at that vertex. 

(2.10) 

where P(s, %) is a factor, which we will evaluate shortly, which depends only on s and 
the particular graph % and where R({ f i v } ,  {&}, {f,,}) includes all factors depending on 
fi,,, h: and f u .  Using the fundamental lattice relation (Domb 1974) 

-L n (nWNbnNcn-NMp(s ,  %>R ( I f iv l ,  ILvl, I f v } ) ,  

Nb i- N ,  - L = NL (2.1 1) 

where NL is the number of closed loops, we see that equation (2.10) is proportional to 
nNL-NM.  Thus in the limit n + O ,  the leading graphs contain no closed loops, and we 
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need only consider graphs consisting of trees and isolated unmarked points. Further- 
more, we can replace N M  by Nt.  In  this case, P(s, %) can be evaluated without too 
much difficulty. First, let us consider the case where only a-vertices are present. With 
each a-vertex of order p ,  there is associated a factor 

(2.12) 

since each bond carries a factor sa"'- 1 = e7e7'. A graph must be a scalar in the 
indices 11, . . . , 1,. A scalar is obtained from collections of vertices carrying factors of 
the form of equation (2.12): (1) by marking with external fields carrying factors e: ; 
and (2) by connecting adjacent vertices by bonds. It is obvious that all external 
vertices must be marked. Internal vertices may or may not be marked. A pth order 
a-vertex marked p times contributes a factor 

(2.13) 

Adjacent p -  and m-order a-vertices connected by a single bond lead to a new effective 
vertex function as follows: 

~ f ' ~ , , . ~ ~ e ~ ~ .  1 . .eip = ( s - l ) [ ( ~ - ~ ) ~ - ' - ( - l ) ~ - ' ] .  

(2.14) 

Using equations (2.13) and (2.14), one can easily see that if all vertices are a-vertices, 

m - S ~ ~ + m - 2  , m-1 
A81./2...ipA1,,1;...1:, - / 2 . . . 1 p . / ; . . . i ,  / 2 . . . i p A i i . . , ~ ; .  

Pa(& 9) = s-=(s - 1)"q-I [(s - l )m-l  - (- l)m-l]Nk (2.15) 

where N k  is the number of m-order a-vertices, and where a subscript a has been 
added to P to emphasise that we are considering only a-vertices. Note that no vertices 
of order one contribute to equation (2.15). This, of course, is required since X(s8"'- 
1)  = 0. Equation (2.15) can be cast in a somewhat more useful form if the m = 0 term 
(i.e. the term corresponding to isolated unmarked points) is displayed explicitly. Using 
the relation N , = N , - N k = = ,  and the fact that the number of vertices in trees is 
Zma2 N",, we have 

m 

(2.16) 

Now consider c-marked vertices. From definition 2, we see that a single c-marked 
vertex of order m 5 2 can be considered as the sum of two a-vertices of order m and 
m - 1,  whereas a singly c-marked vertex of order one is equivalent to an a-vertex of 
order one. Thus, with each singly marked c-vertex of order m 2 2, there is associated 
a factor 

1 
- [(s - 1 ) m - l -  (- y l +  (s - 1)m-Z- (- 1)"4] = (s - 1 y - 2 .  (2.17) 

In the limit s --* 1,  the only singly c-marked vertices that survive are of order two and 
are necessarily external vertices of a tree. This means that in the limit s --* 1, g, marks 
only external vertices whereas g, can mark internal as well as external vertices, 
provided all external vertices are marked with g,. 

S 

If we now consider the limit s --* 1, P(s, %) becomes 

P(s, %) = (s - l)"t( - 1)"q 1 + O(s - l)] (2.18) 
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where N ,  is the number of marked vertices. In deriving equation (2.17) from equation 
(2.15), we used the relation 

1 (m - 2)” = N ,  - 2Nt. 
m a 3  

(2.19) 

P(s, 3) is unaffected by the presence of any b-vertices. Since Zu(n8”’  - 1) = 0, isolated 
points cannot be b-vertices. On the other hand, all trees have Y = 1 so that gb can 
mark any point on any tree with weight one.- 

Finally, we can write the factor Z?({gu}, {hu}, ifv}) as 

(2.20) 

where we have adopted the convention that xi will denote marked vertices yi b- 
vertices. Using equations (2.10), (2.19) and (2.20), we can obtain the desired expan- 
sion of 2:  

Y 1 > . . . Y h f  

where cao(Nb, Nt ,  N,; XI, .  . . XN”;  y1, . . . , YM) is the number of configurations with Nb 

bonds, Nt trees, N, a-marked vertices at x1 . . . xN, and M b-vertices at y ,  , , , y M .  Each 
configuration is counted only once in this expression. The set of points xl .  . . xNV 
represents all external vertices for a = c and includes all external points for a = a. The 
points y1 . . . yM must be vertices through which a tree passes. 

3. Applications to polymer problems 

In this section, we will apply the results of the preceding section to specific problems in 
polymer statistics. We will first show how the results of des Cloizeaux (1975) and 
others for linear polymers can be obtained from this model. We will then consider 
various statistical problems for branched polymers. 

3.1. Linear polymers 

For linear polymers, N, = 2Nt. Since N, > 2Nt for branched trees, the sums in 2 can 
be restricted to linear polymers by choosing H: = [n/(s - 1)]”2H18Y1, h: = 0, H‘, = 0 
(cf Appendix 1). This gives g,= [n/(s - l)]l’ZH1[l +O(n”2)] .  In this case, each term 
in the expansion of 2 (equation (2.20)) is proportional to [n/(s - 1)]”~-~1 and only 
terms with N ,  = 2Nt survive the n + 0 limit. Note that since this implies N, is even, the 
sign of g, can be changed without changing any results. This choice for H: implies 
that 
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and that Hi! (equations (2.5) and (2.6)) satisfies ZilHi = H:. With these choices for 
fiv, k,, n and f v ,  we obtain the expression for 2 first obtained by des Cloizeaux (1975): 

ZL = lim Z(n ,  s) 
n+O 

where C(Np, N b ;  xl, . . . , xzNp) is the number of configurations of N, linear polymers 
with N b  monomers and end points at xl, . . . , xZND. (We have replaced Nt by Np since 
only linear polymers appear.) Since only vertices of order two occur in linear poly- 
mers, it is clear from equations (2.15) and (2.16) that equation (3.2) is completely 
independent of the value of s. Two further points are worth noting about equation 
(3.2). First, only polymers with at least one monomer are included in the sum. If we 
had chosen 6” = f v  = 0, twice-marked isolated vertices would be included in the sum as 
is the case in the des Cloizeaux formulation. Second, since all marked vertices are 
external vertices, the distinction between a-marked and c-marked vertices is irrele- 
vant. 

From equation (3.2) follow all of the recently studied properties of the statistics of 
solutions of linear polymers in the dilute and semi-dilute regimes. In particular, if an 
additional field H2(x) along the v = 2 axis is introduced by writing 

then the transverse correlation function 

where C22(Nbr Np; x, x’) is the number of configurations in which x and x’ are the end 
points of the same polymer. The mean square end-to-end separation t2(Nb, Np) of a 
polymer can easily be obtained from CZz. 

The external fields g”yx) are useful whenever it is desired to mark internal vertices. 
It is often of some experimental interest to know the probability that points x and x’ 
are any two vertices (internal or external) of any polymer. This can be obtained by the 
addition of the field gb(x) = g?(x): 

where B11(Nb, Np; x, x’) is the number of configurations in which the points x and x’ 
are any two points on any polymer. Light scattering experiments probe Bll  directly. 

The probability that the points x and x’ are any two vertices on the same polymer 
can be obtained by introducing an external field gd(x) conjugate to 
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It is clear from the definition that 

and Z,(,, T&) = 0. It is then straightforward to show that 

where B22(Nb, Np; x, x') is the number of configurations in which the points x and x' 
are any two vertices on the same polymer. The radius of gyration of a single polymer 
can be obtained from B22: 

An alternative way of calculating the two functions Bll  and B22 using the n-vector 
model formalism has been given by Moore (1977) and Schafer and Witten (1977). 

As a third example, let us consider the number of configurations 
c ( N b ,  Np; xl, x2;  y )  in which a single polymer with end points at x1 and x2 passes 
through y # x1 # x2. This can be obtained via 

Generalisations of this relation to more complicated correlation functions are obvious. 

3.2. Branched polymers and solutions of trees 

In order to allow for branched configurations of polymers an alternate normalisation 
of g, and g, is needed. Choosing g, and g, to be independent of n and s in the n --f 0 
limit, we obtain 

(3.9) 

We see, therefore, that 1nA acts as a chemical potential for trees, InK for monomers 
and lng, for end points. If a = c, all end points are external vertices. If a = a, some 
end points will be internal vertices. A word of caution regarding equation (3.9) when 
CY = c is perhaps appropriate. From equation (A5), we see that g, lies between zero 
and one when s = 1 for HT > 0. Some problems may occur if it is necessary for g, to 
be greater than unity in order, for example, to obtain a specified average number of 
end points. We stress again that each configuration is counted only once in Cao. 
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A great deal of information is contained in equation (3.9). In this paper, we are 
principally interested in the statistics of single branched polymers. We therefore 
introduce the notation 

(3.10) 

where C?"(Nb, N,; xl, . . . , x k ;  y 1 , .  . . , y m )  is the total number of configurations of a 
branched tree passing through y l ,  . . . , y, with N ,  end points, k of which are at 
xl,. . . , X k .  Two special cases of this function will be of particular interest in the next 
section. If g, =0 ,  only those configurations with N,= k remain. Setting G$: = 
G?"(g, = 0) and Cb: = C?" (N,  = k), we have 

N N,-k k m  
= K bg, C,' ( N b , N v ; X l , .  . . X k ;  Y 1 , .  . . 9 Y m )  

Nb.N, 

To obtain the radius of gyration of a branched tree, we use 

G?'(k, g, ; y ,  y ' )  = CKNbgfVC?' ( N b ;  N,; y, y ' )  (3.12) 

and 

(3.13) 

If N ,  is small enough so that there is only one type of tree (cf introduction), as for 
N,  s 5 with only bi- and tri-functional units, this expression gives the radius of 
gyration for a polymer as well as a tree. For larger values of N,, equation (3.13) 
weights all configurations equally and would give the correct value of ( R k )  for a 
polymer only for a special probability distribution in which each type of polymer is 
weighted by (NT)-' (cf introduction). 

It is possible to discuss polydisperse solutions of trees in which each configuration 
receives an equal weighting by fixing the average number of monomers, polymers and 
external vertices via 

(3.14) 

We will consider this and the more realistic ensemble of Zimm and Stockmayer (1949) 
in a future publication. Finally it is possible to discuss a single branched polymer in a 
semi-dilute solution of linear polymers or semi-dilute mixtures of linear and branched 
polymers by choosing 

(Y = a, c. 

Linear polymers are then marked by H I  and branched polymers by g; (H2).  
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4. Field theory 

In this section, we will convert the Hamiltonian, of equation (2.5) into a field theory 
suitable for use in mean-field calculations and the €-expansion. W e  will then concen- 
trate on finding scaling forms for the functions G:" and C:" introduced in the 
previous section. A discussion of other properties will be presented in a later pub- 
lication. 

W e  begin with a Hubbard-Stratanovitch transformation of equation (2.5). Let 
K ( x ,  x') be a matrix whose elements are K if x and x'  are nearest neighbours and zero 
otherwise. Then, we have 

where a{*} = rIx,i,ld*il(x). 
Using the transformation 

and equations (4.1) and (2 .7 ) ,  we obtain 

where 

(4.2) 

(4.3) 

Equation (4.3) in conjunction with equation (4.4) is an exact expression for the 
partition function of the Hamiltonian of equation (2.5). If we are concerned only with 
the critical properties of this model, we can use the long-wavelength continuum form 
of this equation. First consider the problem when Lv = f v  = 0; then we have 

W41 exp[ - (21 + %">I. (4.5) 

Here XI is the Hamiltonian of an isotropic ns-component system: 
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where G2 = Xi/$:, and ZB is tne part of the Hamiltonian that can lead to branching 
trees: 

r is proportional to ( T -  Tc) where Tc= T&K(x, x'), and u4, U g ,  w3, w4 etc are 
proportional to powers of K. The potential w, obviously give rise to vertices of order i .  
Note that ZB + 0 as n + 0, so that the critical properties of this model are controlled by 
the isotropic n = 0 fixed point, as long as there are a finite sized polymers with a finite 
number of branches. This result is, of course expected since we showed in 0 3.1 that 
the present model is identical to the isotropic n-component model in the n = 0 limit 
for the appropriate normalisation of g. The formation of an infinite polymer with no 
closed loops corresponds to tree-like gelation which is described by the zero-state 
Potts model (Stephen 1976). Thus there is presumably a crossover from the n = 0 
Heisenberg critical behaviour to that of the zero-state Potts model as the number of 
monomers and branches is increased. The mathematical mechanism for this crossover 
is somewhat subtle and will be discussed in a further publication. For the present, we 
will consider behaviour in the vicinity of the n = 0 Heisenberg fixed point. 

Under renormalisation group transformations (Wilson and Kogut 1974) where 
degrees of freedom with wavenumber q satisfying b-' < 141 < 1 are removed and the 
system is rescaled to regain the unit sphere Brillouin zone keeping the coefficient of 
(V&)* constant, potentials transform according to 

where the exponents A ,  = l /v ,  A w ,  = p w , / v ,  A,,, = p,,,/v and 7 are evaluated at the 
isotropic n = O  fixed point. The exponent v and the correction to scaling (Wegner 
1972) exponent A,, have been evaluated (Brezin et a1 1973) to third order in E (  = 4 - 
d )  and 7 to fourth order in E .  They have also been evaluated to a precision of better 
than 1 O/O using PadC-Bore1 resummation techniques in three dimensions (Le Guillou 
and Zinn-Justin 1977). The exponents A,+, can easily be evaluated to first order in E .  

We obtain 

p2 -  5 p  + 8 
8 

Awp=4-p -  €. (4.9) 

We are now in a position to discuss the large-Nb behaviour of the function 
c:bo((Nb; xl, . . . , xk) introduced in 0 3.2 (equation (3.11)). First observe that, since 

(4.10) 

where ( A B .  . .>c signifies the cumulant average of A B .  . . . We can see immediately 
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that the explicit factors of n that accompany the branching potentials wi (equation 
(4.7)) are removed by the factor n1-k/2 in equation (4.10). Thus, G,k: for k 3 3 must 
be explicitly proportional to sums of products of the wj’s. For example, GibO is 
linearly proportional to w3 and GZf has a term proportional to w: and one pro- 
portional to w4 representing branched trees with respectively two vertices of order 
three and one vertex of order four. For widely separated points, the scaling relations 
(4.8) imply 

(4.1 1) -k(d-2+?)/2 k XI 
G,k$(r, {Wl}; X1 . . . xk)=[ F ( { 5 A w t w J ; ~ ,  * * ”  “) 5 

where 

Fk({Wj}; Zi,. . . , Zk)= G::(I, { W i } ;  21,. * zk) and 6 = (T  - T,)-”. 

Consider now some special cases. G:$ must be linearly proportional to w3 so that 

(4.12) 

where 

Then, since 

for large Nb, we have 

(4.14) 

where 6, = N;I and gz is a function which we will not bother to specify. G 4  IS ‘ a sum 
of two terms. Following the same procedure as for G:: we obtain 

-1 -2(d-2+1)+A 
+ N b  6, (4.15) 

Thus, in the large-Nb limit, the term with two third-order vertices overwhelms the 
term with one fourth-order vertex since A,, >>AW4.  Expressions (4.14) and (4.15) are 
valid for both polymers and trees, though the normalisation of the functions g:, gttl 
and g;2 will be different in two cases. 

Now let us return to the field gb(X) which can mark all vertices in a polymer. 
Differentiating equation (4.4) with respect to c l ,  we find the conjugate field 

(4.16) 
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Expanding in powers of t,bll(x) and retaining only long-wavelength parts, we obtain 

where z is the number of nearest neighbours. 
Thus it is clear that Tb(X) can be written in the form 

(4.18) 

where Tbm(X)  is of order 4" and marks a-vertices of order m. Since e - y ( x ) =  1 + o(J12), 
Tb(X) can be replaced by its most relevant term 

in discussions of critical properties at large Nb . 7b2 scales like an anisotropy field 
under renormalisation: 

7 6 2  (X)" b d - A A 7 b 2 ( b X )  (4.19) 

where A A  = rpA/v and rpA is the crossover exponent (Riedel and Wegner 1969, Fisher 
and Pfeuty 1972) for turning on an anisotropy in the exchange potential K. In the 
n = 0 limit, qA is rigorously unity to all orders in perturbation theory (T C Lubensky, 
unpublished) so that A A  = l / v .  Thus, when n = 0, 7b2 and the energy density scale in 
the same way. Thus, our results for the functions Dll and 0 2 2  (equations (3.4) and 
(3.6)) agree with those obtained by Moore (1977) and Schafer and Witten (1977). In 
particular, we predict 

G:"(r, {Hi,}, {Wi}; Y, Y ' )  = 5 2 [ ( 1 / v ) - d l ~ : . 2 (  {(A HHil}, {$"'Wi}; - - 

where A H  = ;(d + 2 - v). 

third-order vertices, then 

(4.20) 
:? 2) 

Using equation (3.10), we can obtain C:v2. For example, if we consider only 

In both cases (RL) is calculated from equation (3.13) is proportional to 6; though the 
constant of proportionality will be different. 

Finally, we discuss the correlation function C y  (Nb; XI, . . . , xk) in which all end 
points are external vertices. From equation (2.3), we have 

1 
T c ( X )  = p e ;  41, ( X I  + d x ) .  
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Thus, 

G:g((r, {Wi}; XI,. . . , xk) 

Restricting our attention to systems with vertices of order three, we see that the 
dominant term in this series is Gig since A,, - i (d - 2 + 7)) A A -  d. In other words, if 
we are only concerned with properties of correlation functions for large Nb, it does not 
matter whether we specifically mark external vertices or mark both external and 
internal vertices. 

5. Summary 

In this paper we introduced an ns-component generalisation of the 2n-component 
Hilhorst model. We showed how generating functions for the statistics of branched 
polymers can be obtained from the thermodymins of this model in the limit (s - 1)= 
An, n + 0. In particular, we showed that the partition function, 2, could be expanded 
in a power series in the nearest-neighbour interaction strength K, an external field g 
and A .  Configurations of trees with Nb monomers, N ,  external vertices and N ,  trees 
are weighted with a factor KNbgNbA in the expansion of Z. This result is summarised 
in equation (2.21). Thus, we have identified separate chemical potentials for the 
number of monomers, the number of external vertices and the number of trees. 

We showed how the ns-component Hilhorst model can be converted into a field 
theory. An important result of this operation is the demonstration that all potentials 
leading to branching are explicitly proportional to some power of n. Thus, even 
though there is a three-point vertex describing a tri-functional unit, the critical 
properties of branched polymers are still controlled by the usual n = 0 Heisenberg 
fixed point, as long as there are a finite sized polymers with a finite number of 
branches. Using this result, we discussed the scaling behaviour of some correlation 
functions. 

The principal purpose of this paper was to discuss the formal properties of the 
ns-component Hilhorst model. Actual applications of this model to the calculation of 
the statistics of multiply-branched polymers and the crossover to gelation and vul- 
canisation will be presented in future publications. 
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Appendix 1 

In this appendix, we display the forms f i v ( x ) ,  Gu(x)  and fy(x) must have in order that 
e -z can be written as equation (2.8). Let us write 

&(x) = - H: (x) - H‘, (x), 

G”(x)= - h”,(X)+ h:(x)- hz(x)-H‘y(x), 

f” ( X I  = f”, (x) + f: (XI + fv(x>. 
(A. 1) 

We then find that the functions g”yx), gt(x) and g‘y(x) can be defined via 

exp( - H z  (x )T: (x) - h z (x 1 6  (1) + fz (XI) = (1 - g (x )~ :  (x )I, c r=a , c  

exp(h ! (x )d (x) + f: (XI) = (1 + g: (x )6 (x I), 
where 

(‘4.2) 

a exp(sHi”,)-l 
gu = 1 + (s - 1) exp(sHE) 

exp[nhE/(n - l)] - 1 
n - 1 +exp[nhb,/(n - 1)J 

g: = (n - 1) 

1 
g‘y = - [ 1 - exp(-sH‘, 1, (‘4.5) 

S 

and 

fv = h‘,. (A.8) 
n 

expj -- h:) = 
n - 1  

s(n - 1) exp[H‘y/(n - l)] 
s(n - 1)+ 1 -exp(-sHz)’ 

Note that g; = H; +O((H;)’), h; = O((H:)’) and f; = O((Hz)’) for LY = a ,  c. Also, 
g’: = +O((h!)’) and f! = O((h:)’). 
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